If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (3j4 + 5) + -1(8j3 + 5) + -1(6j4 + 5j3) = 0 Reorder the terms: (5 + 3j4) + -1(8j3 + 5) + -1(6j4 + 5j3) = 0 Remove parenthesis around (5 + 3j4) 5 + 3j4 + -1(8j3 + 5) + -1(6j4 + 5j3) = 0 Reorder the terms: 5 + 3j4 + -1(5 + 8j3) + -1(6j4 + 5j3) = 0 5 + 3j4 + (5 * -1 + 8j3 * -1) + -1(6j4 + 5j3) = 0 5 + 3j4 + (-5 + -8j3) + -1(6j4 + 5j3) = 0 Reorder the terms: 5 + 3j4 + -5 + -8j3 + -1(5j3 + 6j4) = 0 5 + 3j4 + -5 + -8j3 + (5j3 * -1 + 6j4 * -1) = 0 5 + 3j4 + -5 + -8j3 + (-5j3 + -6j4) = 0 Reorder the terms: 5 + -5 + -8j3 + -5j3 + 3j4 + -6j4 = 0 Combine like terms: 5 + -5 = 0 0 + -8j3 + -5j3 + 3j4 + -6j4 = 0 -8j3 + -5j3 + 3j4 + -6j4 = 0 Combine like terms: -8j3 + -5j3 = -13j3 -13j3 + 3j4 + -6j4 = 0 Combine like terms: 3j4 + -6j4 = -3j4 -13j3 + -3j4 = 0 Solving -13j3 + -3j4 = 0 Solving for variable 'j'. Factor out the Greatest Common Factor (GCF), '-1j3'. -1j3(13 + 3j) = 0 Ignore the factor -1.Subproblem 1
Set the factor 'j3' equal to zero and attempt to solve: Simplifying j3 = 0 Solving j3 = 0 Move all terms containing j to the left, all other terms to the right. Simplifying j3 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.Subproblem 2
Set the factor '(13 + 3j)' equal to zero and attempt to solve: Simplifying 13 + 3j = 0 Solving 13 + 3j = 0 Move all terms containing j to the left, all other terms to the right. Add '-13' to each side of the equation. 13 + -13 + 3j = 0 + -13 Combine like terms: 13 + -13 = 0 0 + 3j = 0 + -13 3j = 0 + -13 Combine like terms: 0 + -13 = -13 3j = -13 Divide each side by '3'. j = -4.333333333 Simplifying j = -4.333333333Solution
j = {-4.333333333}
| 3x+10y+0.5z=100 | | 3k^2+21k=0 | | x-1=99 | | 2(k+1)+2(1-9k)=y | | 5(10k+9)-7(1-4k)=y | | 74x+7= | | (2x^2+2x+18)+(3x^2-4x+13)-(x^2+15x-2)=0 | | 6(x-3)=-3x-54 | | f(x)=9x^2+54x+71 | | (5g^3+2)-(6g+6)-(4g^3-3g)=0 | | (7b^4-4)-(7b^3-5)+(4b^4-3b^3)=0 | | secx+cosx=0 | | 2r^2-10r-48=0 | | 3(9n+5)+8(10n-9)=y | | 4(3x-1)+9(-5x+2)=y | | 9(6a-10)+2(-6a+8)=y | | 6(4k-5)-4k=y | | -9(2-10a)+8a=y | | 3(1+8m)=y | | 4(9+4x)=y | | f(x)=2x^2-36x+169 | | 6x+43=300 | | -6(8+x)-7=y | | 7(-6m-8)+9m=y | | 10(-2b+8)+2=y | | 10(1-6v)=y | | 10(1-6v)=y | | 7(x*6)+y=119 | | -6(b-2)=y | | 5x^3=8 | | x^4+x^3+x+4=0 | | -7(10p-7)=y |